some small refactoring

This commit is contained in:
Reid 2023-09-29 15:07:51 -07:00
commit 0f7ecba1ab
Signed by: reidlab
GPG key ID: 6C9EAA3364F962C8
8 changed files with 972 additions and 0 deletions

165
src/assets.rs Normal file
View file

@ -0,0 +1,165 @@
use plist;
use std::collections::HashMap;
use image::*;
use image::{DynamicImage, ImageBuffer, imageops};
// "{1,2}" -> `(1, 2)`
fn parse_vec(str: &str) -> (i32, i32) {
let parts: Vec<&str> = str[1..str.len()-1].split(",").collect();
let a: Vec<i32> = parts
.iter()
.map(|s| s.trim().parse::<i32>().unwrap())
.collect();
return (a[0], a[1])
}
// parse_vec, but for float64
fn parse_vec_f32(str: &str) -> (f32, f32) {
let parts: Vec<&str> = str[1..str.len()-1].split(",").collect();
let a: Vec<f32> = parts
.iter()
.map(|s| s.trim().parse::<f32>().unwrap())
.collect();
return (a[0], a[1])
}
// `"{{1,2},{3,4}}"` -> `{{1, 2}, {3, 4}}`
fn parse_rect_vecs(str: &str) -> ((i32, i32), (i32, i32)) {
let cleaned_str = str.replace("{", "").replace("}", "");
let parts: Vec<&str> = cleaned_str.split(",").collect();
let a: Vec<i32> = parts
.iter()
.map(|s| s.trim().parse::<i32>().unwrap())
.collect();
return ((a[0], a[1]), (a[2], a[3]))
}
// Represents a sprite along with its texture data in a spritesheet.
#[derive(Clone, Copy, Debug)]
pub struct Sprite {
// Whenever rendering the sprite, offset it by this much
pub offset: (f32, f32),
// {left, top}, {width, height}. Controls the cropping
rect: ((i32, i32), (i32, i32)),
// Whether the texture needs to be counter-rotated 90 degrees counter-clockwise
rotated: bool,
size: (i32, i32),
// Difference between this and `size` is unknown to me
source_size: (i32, i32)
}
impl Sprite {
// Shorthand for initializing a sprite with its .plist representation.
fn initialize(obj: plist::Value) -> Sprite {
let hash = obj.as_dictionary().expect("object must be a dict");
let hash_keys = vec!["spriteOffset", "spriteSize", "spriteSourceSize", "textureRect", "textureRotated"];
let isolated: Vec<(&&str, Option<&plist::Value>)> = hash_keys
.iter()
.map(|s| (s, hash.get(s)))
.collect();
let missing: Vec<&(&&str, Option<&plist::Value>)> = isolated
.iter()
.filter(|&&(_, value)| value.is_none())
.collect();
if !missing.is_empty() {
let missing_entries: Vec<&str> = missing.iter().map(|(&key, _)| key).collect();
panic!("missing entries: {:?}", missing_entries);
}
let isolated_hash: HashMap<String, plist::Value> = isolated
.iter()
.map(|&(key, value)| (key.to_string(), value.expect("value is none after checking").clone()))
.collect();
return Sprite {
offset: parse_vec_f32(isolated_hash.get("spriteOffset").expect("missing spriteOffset").as_string().expect("spriteOffset is not a string")),
rect: parse_rect_vecs(isolated_hash.get("textureRect").expect("missing textureRect").as_string().expect("textureRect is not a string")),
rotated: isolated_hash.get("textureRotated").unwrap_or(&plist::Value::from(false)).as_boolean().expect("textureRotated is not a boolean").clone(),
size: parse_vec(isolated_hash.get("spriteSize").expect("missing spriteSize").as_string().expect("spriteSize is not a string")),
source_size: parse_vec(isolated_hash.get("spriteSourceSize").expect("missing spriteSourceSize").as_string().expect("spriteSourceSize is not a string"))
}
}
}
// Represents a spritesheet along with its sprites.
#[derive(Clone)]
pub struct Spritesheet {
sprites: HashMap<String, Sprite>,
texture_file_name: String,
size: (i32, i32)
}
impl Spritesheet {
// Shorthand for initializing a spritesheet with its .plist representation.
fn initialize(obj: plist::Value) -> Spritesheet {
let hash = obj.as_dictionary().expect("object must be a dict");
let sprites = hash.get("frames").expect("object must have a `frames` object").as_dictionary().expect("`frames` must be a dict");
let metadata = hash.get("metadata").expect("object must have a `metadata` object").as_dictionary().expect("`metadata` must be a dict");
return Spritesheet {
sprites: sprites.iter().map(|(key, value)| (key.clone(), Sprite::initialize(value.clone()))).collect(),
texture_file_name: metadata.get("textureFileName").expect("metadata must have a `textureFileName` object").as_string().expect("`textureFileName` must be a string").to_string(),
size: parse_vec(metadata.get("size").expect("metadata must have a `size` object").as_string().expect("`size` must be a string"))
}
}
}
// Stores both a spritesheet and its associated `DynamicImage` for easy access.
#[derive(Clone)]
pub struct LoadedSpritesheet {
spritesheet: Spritesheet,
texture: DynamicImage
}
// Loads the spritesheet and readies the associated image.
pub fn load_spritesheet(path: &str) -> LoadedSpritesheet {
return LoadedSpritesheet {
spritesheet: Spritesheet::initialize(plist::from_file(path).expect("could not load plist")),
texture: image::open(path.replace(".plist", ".png")).expect("could not load texture")
}
}
// Trims out a sprite from an image according to a .plist spritesheet.
pub fn get_sprite(spritesheet: Spritesheet, img: DynamicImage, key: String) -> Option<(DynamicImage, Sprite)> {
let sprite = spritesheet.sprites.get(&key);
let mut canvas = img.clone();
if sprite.is_none() {
return None;
}
if let Some(sprite) = sprite {
let rect = sprite.rect;
let (mut left, mut top, mut width, mut height) = (rect.0.0, rect.0.1, rect.1.0, rect.1.1);
if sprite.rotated {
(left, top, width, height) = (left, top, height, width);
}
canvas = canvas.crop(left as u32, top as u32, width as u32, height as u32);
if sprite.rotated {
canvas = canvas.rotate270();
}
return Some((canvas, sprite.clone()));
}
panic!("The sprite should have been found in the spritesheet or not found at all")
}
pub fn get_sprite_from_loaded(spritesheet: LoadedSpritesheet, key: String) -> Option<(DynamicImage, Sprite)> {
let texture = spritesheet.texture.clone();
let sprite = get_sprite(spritesheet.spritesheet.clone(), texture, key);
return sprite;
}

65
src/constants.rs Normal file
View file

@ -0,0 +1,65 @@
use std::{collections::HashMap, sync::LazyLock};
use maplit::hashmap;
pub const COLORS: &'static [[f32; 3]] = &[
[125.0 / 255.0, 255.0 / 255.0, 0.0 / 255.0],
[0.0 / 255.0, 255.0 / 255.0, 0.0 / 255.0],
[0.0 / 255.0, 255.0 / 255.0, 125.0 / 255.0],
[0.0 / 255.0, 255.0 / 255.0, 255.0 / 255.0],
[0.0 / 255.0, 125.0 / 255.0, 255.0 / 255.0],
[0.0 / 255.0, 0.0 / 255.0, 255.0 / 255.0],
[125.0 / 255.0, 0.0 / 255.0, 255.0 / 255.0],
[255.0 / 255.0, 0.0 / 255.0, 255.0 / 255.0],
[255.0 / 255.0, 0.0 / 255.0, 125.0 / 255.0],
[255.0 / 255.0, 0.0 / 255.0, 0.0 / 255.0],
[255.0 / 255.0, 125.0 / 255.0, 0.0 / 255.0],
[255.0 / 255.0, 255.0 / 255.0, 0.0 / 255.0],
[255.0 / 255.0, 255.0 / 255.0, 255.0 / 255.0],
[185.0 / 255.0, 0.0 / 255.0, 255.0 / 255.0],
[255.0 / 255.0, 185.0 / 255.0, 0.0 / 255.0],
[0.0 / 255.0, 0.0 / 255.0, 0.0 / 255.0],
[0.0 / 255.0, 200.0 / 255.0, 255.0 / 255.0],
[175.0 / 255.0, 175.0 / 255.0, 175.0 / 255.0],
[90.0 / 255.0, 90.0 / 255.0, 90.0 / 255.0],
[255.0 / 255.0, 125.0 / 255.0, 125.0 / 255.0],
[0.0 / 255.0, 175.0 / 255.0, 75.0 / 255.0],
[0.0 / 255.0, 125.0 / 255.0, 125.0 / 255.0],
[0.0 / 255.0, 75.0 / 255.0, 175.0 / 255.0],
[75.0 / 255.0, 0.0 / 255.0, 175.0 / 255.0],
[125.0 / 255.0, 0.0 / 255.0, 125.0 / 255.0],
[175.0 / 255.0, 0.0 / 255.0, 75.0 / 255.0],
[175.0 / 255.0, 75.0 / 255.0, 0.0 / 255.0],
[125.0 / 255.0, 125.0 / 255.0, 0.0 / 255.0],
[75.0 / 255.0, 175.0 / 255.0, 0.0 / 255.0],
[255.0 / 255.0, 75.0 / 255.0, 0.0 / 255.0],
[150.0 / 255.0, 50.0 / 255.0, 0.0 / 255.0],
[150.0 / 255.0, 100.0 / 255.0, 0.0 / 255.0],
[100.0 / 255.0, 150.0 / 255.0, 0.0 / 255.0],
[0.0 / 255.0, 150.0 / 255.0, 100.0 / 255.0],
[0.0 / 255.0, 100.0 / 255.0, 150.0 / 255.0],
[100.0 / 255.0, 0.0 / 255.0, 150.0 / 255.0],
[150.0 / 255.0, 0.0 / 255.0, 100.0 / 255.0],
[150.0 / 255.0, 0.0 / 255.0, 0.0 / 255.0],
[0.0 / 255.0, 150.0 / 255.0, 0.0 / 255.0],
[0.0 / 255.0, 0.0 / 255.0, 150.0 / 255.0],
[125.0 / 255.0, 255.0 / 255.0, 175.0 / 255.0],
[125.0 / 255.0, 125.0 / 255.0, 255.0 / 255.0]
];
// `zany` = uses 2.0 gamemode render system w/ multiple moving parts
pub struct Gamemode {
prefix: String,
zany: bool
}
pub static GAMEMODES: LazyLock<HashMap<&str, Gamemode>> = LazyLock::new(|| { hashmap! {
"cube" => Gamemode { prefix: "player_".to_string(), zany: false },
"ship" => Gamemode { prefix: "ship_".to_string(), zany: false },
"ball" => Gamemode { prefix: "player_ball_".to_string(), zany: false },
"ufo" => Gamemode { prefix: "bird_".to_string(), zany: false },
"wave" => Gamemode { prefix: "dart_".to_string(), zany: false },
// unimplemented
// "robot" => Gamemode { prefix: "robot_".to_string(), zany: true },
// "spider" => Gamemode { prefix: "spider_".to_string(), zany: true },
}});

36
src/lib.rs Normal file
View file

@ -0,0 +1,36 @@
#![feature(lazy_cell)]
pub mod assets;
pub mod constants;
pub mod renderer;
#[cfg(test)]
mod tests {
use super::*;
use renderer::*;
use assets::*;
// not actually used, just for benchmarking
use std::time::Instant;
#[test]
fn it_works() {
let game_sheet_02 = load_spritesheet("assets/GJ_GameSheet02-uhd.plist");
let game_sheet_glow = load_spritesheet("assets/GJ_GameSheetGlow-uhd.plist");
let start = Instant::now();
let rendered_img = render_normal(
"ship_18".to_string(),
[0.0/255.0, 0.0/255.0, 0.0/255.0],
[0.0/255.0, 0.0/255.0, 0.0/255.0],
true,
game_sheet_02,
game_sheet_glow,
);
rendered_img.save("rendered_icon.png").expect("saving image failed");
let end = Instant::now();
println!("Time elapsed: {:?}", end.duration_since(start));
}
}

147
src/renderer.rs Normal file
View file

@ -0,0 +1,147 @@
use image::*;
use image::{DynamicImage, imageops};
use std::cmp;
use crate::assets;
use crate::assets::LoadedSpritesheet;
// Internal function to easily transform an image
fn transform(image: &DynamicImage, color: Option<[f32; 3]>, scale: Option<(f32, f32)>, rotation: Option<i32>) -> DynamicImage {
let mut transformed_image = image.clone();
if let Some(color) = color {
let mut img_buffer = image.to_rgba8();
for (_x, _y, pixel) in img_buffer.enumerate_pixels_mut() {
for channel in 0..3 {
pixel.0[channel] = (pixel.0[channel] as f32 * color[channel]) as u8;
}
}
transformed_image = DynamicImage::ImageRgba8(img_buffer);
}
if let Some((scale_x, scale_y)) = scale {
let width = transformed_image.width();
let height = transformed_image.height();
let abs_scale_x = scale_x.abs();
let abs_scale_y = scale_y.abs();
transformed_image = transformed_image.resize_exact(
(width as f32 * abs_scale_x) as u32,
(height as f32 * abs_scale_y) as u32,
image::imageops::FilterType::Lanczos3
);
if scale_x < 0.0 {
transformed_image = transformed_image.fliph();
}
if scale_y < 0.0 {
transformed_image = transformed_image.flipv();
}
}
if let Some(rotation) = rotation {
match rotation {
0 => (),
90 => transformed_image = transformed_image.rotate90(),
180 => transformed_image = transformed_image.rotate180(),
270 => transformed_image = transformed_image.rotate270(),
_ => panic!("rotation must be 0, 90, 180, or 270"),
}
}
return transformed_image;
}
// Mainly for internal use; given an array of images, their sizes and colors, tints and composits them into a single image
pub fn render_layered(images: Vec<DynamicImage>, positions: Vec<Option<(f32, f32)>>, colors: Vec<[f32; 3]>, scales: Vec<Option<(f32, f32)>>, rotations: Vec<Option<i32>>) -> DynamicImage {
let transformed: Vec<DynamicImage> = images.iter().enumerate().map(|(i, img)| {
transform(img, Some(colors[i]), scales[i], rotations[i])
}).collect();
let sizes: Vec<(i64, i64)> = transformed.iter().map(|img| {
(img.width() as i64, img.height() as i64)
}).collect();
let positions: Vec<(f32, f32)> = images.iter().enumerate().map(|(i, _v)| {
positions[i].unwrap_or((0.0, 0.0))
}).collect();
let bounding_box = sizes
.iter()
.enumerate()
.fold((0, 0), |acc, (i, &size)| {
let (width, height) = size;
let (x, y) = positions.get(i).cloned().unwrap_or((0.0, 0.0));
(
cmp::max(acc.0, (width as f32 + x.abs() * 2.0) as i32),
cmp::max(acc.1, (height as f32 + y.abs() * 2.0) as i32)
)
});
let mut canvas = ImageBuffer::new(bounding_box.0 as u32, bounding_box.1 as u32);
// base
canvas.copy_from(
transformed.get(0).expect("no images provided"),
(bounding_box.0 as f32 / 2.0 + positions[0].0 as f32 - sizes[0].0 as f32 / 2.0) as u32,
(bounding_box.1 as f32 / 2.0 + positions[0].1 as f32 - sizes[0].1 as f32 / 2.0) as u32
).expect("couldnt copy from img");
// stacking
for (i, image) in transformed.iter().enumerate().skip(1) {
let x = (bounding_box.0 as f32 / 2.0 + positions[i].0 as f32 - image.width() as f32 / 2.0) as i64;
let y = (bounding_box.1 as f32 / 2.0 + positions[i].1 as f32 - image.height() as f32 / 2.0) as i64;
imageops::overlay(&mut canvas, image, x, y)
}
return DynamicImage::ImageRgba8(canvas);
}
fn is_black(c: [f32; 3]) -> bool {
c == [0.0, 0.0, 0.0]
}
// Renders out a non-robot/spider icon. You may be looking for `render_icon`.
pub fn render_normal(basename: String, col1: [f32; 3], col2: [f32; 3], glow: bool, game_sheet_02: LoadedSpritesheet, game_sheet_glow: LoadedSpritesheet) -> DynamicImage {
let glow_col = if is_black(col2) { if is_black(col1) { [1.0, 1.0, 1.0] } else { col1 } } else { col2 };
let layers = vec![
(if glow || (is_black(col1) && is_black(col2)) {
assets::get_sprite_from_loaded(game_sheet_glow, format!("{}_glow_001.png", basename))
} else {
None
}),
assets::get_sprite_from_loaded(game_sheet_02.clone(), format!("{}_2_001.png", basename)),
assets::get_sprite_from_loaded(game_sheet_02.clone(), format!("{}_3_001.png", basename)),
assets::get_sprite_from_loaded(game_sheet_02.clone(), format!("{}_001.png", basename)),
assets::get_sprite_from_loaded(game_sheet_02, format!("{}_extra_001.png", basename))
];
let colors: Vec<Option<[f32; 3]>> = vec![
Some(glow_col),
Some(col2),
None,
Some(col1),
None
];
return render_layered(
layers.iter()
.filter_map(|s| s.as_ref().map(|(img, _spr)| img.to_owned()))
.collect(),
layers.iter()
.filter_map(|s| s.as_ref().map(|(_img, spr)| Some((spr.offset.0, spr.offset.1 * -1.0))))
.collect(),
colors.iter()
.enumerate()
.filter_map(|(i, color)| layers[i].clone().map(|_| color.unwrap()))
.collect(),
vec![None, None, None, None, None],
vec![None, None, None, None, None]
);
}